# /// script # requires-python = ">=3.11" # dependencies = ["sympy"] # /// import sympy as sp # 定义符号变量 x = sp.symbols('x', real=True) # 定义二次函数 y = -2*x**2 + 8*x - 3 print("=" * 50) print("二次函数 y = -2x² + 8x - 3 求解") print("=" * 50) # 方法1:配方法求顶点 # y = -2(x² - 4x) - 3 # y = -2(x² - 4x + 4 - 4) - 3 # y = -2(x - 2)² + 8 - 3 # y = -2(x - 2)² + 5 # 方法2:使用公式 x_vertex = -b/(2a) a = -2 b = 8 c = -3 x_vertex = -b / (2*a) y_vertex = a * x_vertex**2 + b * x_vertex + c print(f"\n1. 顶点坐标") print(f" 使用公式 x = -b/(2a) = -{b}/(2×{a}) = {x_vertex}") print(f" 代入求 y = {a}×{x_vertex}² + {b}×{x_vertex} + ({c}) = {y_vertex}") print(f" 顶点坐标: ({int(x_vertex)}, {int(y_vertex)})") print(f"\n2. 函数最大值") print(f" 由于 a = {a} < 0,抛物线开口向下") print(f" 函数在顶点处取得最大值") print(f" 最大值: y_max = {int(y_vertex)}") # 使用 SymPy 验证 print("\n" + "=" * 50) print("SymPy 符号计算验证") print("=" * 50) # 求导数找极值点 dy = sp.diff(y, x) critical_points = sp.solve(dy, x) print(f"\n导数: y' = {dy}") print(f"令 y' = 0,解得 x = {critical_points}") # 验证是最大值(二阶导数 < 0) d2y = sp.diff(dy, x) print(f"二阶导数: y'' = {d2y} < 0,确认为最大值点") # 计算顶点处的函数值 x_v = critical_points[0] y_v = y.subs(x, x_v) print(f"\n顶点坐标: ({x_v}, {y_v})") print(f"最大值: {y_v}") # 配方形式 print("\n" + "=" * 50) print("配方形式验证") print("=" * 50) vertex_form = -2*(x - 2)**2 + 5 expanded = sp.expand(vertex_form) print(f"配方形式: y = -2(x - 2)² + 5") print(f"展开验证: {expanded}") print(f"与原式相等: {sp.simplify(expanded - y) == 0}")