# /// script # requires-python = ">=3.11" # dependencies = ["sympy"] # /// import sympy as sp def solve(): x = sp.symbols('x', real=True) y = -2*x**2 + 8*x - 3 # Find derivative to find critical points dy_dx = sp.diff(y, x) critical_points = sp.solve(dy_dx, x) print(f"Critical points (x): {critical_points}") if not critical_points: print("No critical points found.") return vertex_x = critical_points[0] vertex_y = y.subs(x, vertex_x) print(f"Vertex: ({vertex_x}, {vertex_y})") # Check second derivative to confirm maximum d2y_dx2 = sp.diff(dy_dx, x) print(f"Second derivative: {d2y_dx2}") if d2y_dx2 < 0: print("The vertex is a maximum.") max_val = vertex_y else: print("The vertex is a minimum.") max_val = vertex_y print(f"Maximum value: {max_val}") if __name__ == "__main__": solve()