diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/figure.png b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/figure.png new file mode 100644 index 0000000..346cffb Binary files /dev/null and b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/figure.png differ diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/output.txt b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/output.txt new file mode 100644 index 0000000..3724bba --- /dev/null +++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/output.txt @@ -0,0 +1,9 @@ +← sh(255) → node(264) → node(478) → zsh(pid=50427) + args: /bin/zsh -i +🔍 找到真实二进制文件: /usr/local/bin/uv +→ exec /usr/local/bin/uv +Critical points (x): [2] +Vertex: (2, 5) +Second derivative: -4 +The vertex is a maximum. +Maximum value: 5 diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot.py b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot.py new file mode 100644 index 0000000..745681c --- /dev/null +++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot.py @@ -0,0 +1,46 @@ +# /// script +# requires-python = ">=3.11" +# dependencies = ["numpy", "matplotlib"] +# /// + +import numpy as np +import matplotlib.pyplot as plt + +# 设置字体 +plt.rcParams['font.sans-serif'] = ['WenQuanYi Micro Hei', 'Noto Sans CJK SC', 'Microsoft YaHei', 'SimHei', 'SimSun', 'DejaVu Sans'] +plt.rcParams['axes.unicode_minus'] = False + +# 绑定图像尺寸和 DPI +plt.figure(figsize=(8, 6), dpi=150) + +# 定义函数 +def f(x): + return -2 * x**2 + 8 * x - 3 + +# 生成 x 值 +x = np.linspace(-1, 5, 400) +y = f(x) + +# 绘制函数曲线 +plt.plot(x, y, label=r'$y = -2x^2 + 8x - 3$', color='blue') + +# 标记顶点 (2, 5) +vertex_x = 2 +vertex_y = 5 +plt.plot(vertex_x, vertex_y, 'ro', label='顶点 (2, 5)') +plt.annotate(f'({vertex_x}, {vertex_y})', xy=(vertex_x, vertex_y), xytext=(vertex_x + 0.5, vertex_y), + arrowprops=dict(facecolor='black', shrink=0.05)) + +# 添加坐标轴标签和标题 +plt.xlabel('x') +plt.ylabel('y') +plt.title('二次函数 $y = -2x^2 + 8x - 3$ 图像') +plt.axhline(0, color='black',linewidth=0.5) +plt.axvline(0, color='black',linewidth=0.5) +plt.grid(True, linestyle='--', alpha=0.7) +plt.legend() + +# 保存图像 +plt.savefig('figure.png', bbox_inches='tight') +plt.close() +print("图像已保存: figure.png") diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot_output.txt b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot_output.txt new file mode 100644 index 0000000..2d00ca9 --- /dev/null +++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot_output.txt @@ -0,0 +1,5 @@ +← sh(255) → node(264) → node(478) → zsh(pid=50427) + args: /bin/zsh -i +🔍 找到真实二进制文件: /usr/local/bin/uv +→ exec /usr/local/bin/uv +图像已保存: figure.png diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/report.md b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/report.md new file mode 100644 index 0000000..1db7d80 --- /dev/null +++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/report.md @@ -0,0 +1,72 @@ +# 二次函数 $y=-2x^2+8x-3$ 求解报告 + +## 1. 🎯 问题描述 + +已知二次函数 $y=-2x^2+8x-3$,求: +1. 函数的顶点坐标 +2. 函数的最大值 + +## 2. ✅ 最终结论 + +该二次函数的顶点坐标为 $(2, 5)$。 +由于二次项系数 $-2 < 0$,抛物线开口向下,函数在顶点处取得最大值,最大值为 $5$。 + +## 3. 📈 可视化 + +![函数图像](figure.png) + +**图表说明**: +- 蓝色曲线:二次函数 $y = -2x^2 + 8x - 3$ 的图像 +- 红色圆点:函数的顶点 $(2, 5)$,也是函数的最高点 + +## 4. 🧠 数学建模与解题过程 + +
+点击展开 + +**问题分析**: +这是一个标准的二次函数性质分析问题。二次函数的一般形式为 $y = ax^2 + bx + c$。 +本题中,$a = -2, b = 8, c = -3$。 + +**方法选择**: +可以通过配方法将一般式转化为顶点式 $y = a(x-h)^2 + k$,从而直接读出顶点 $(h, k)$ 和最值。 +也可以利用导数法求极值点。 +这里我们使用 SymPy 进行符号计算,通过求导数的方法来确定顶点和最值。 + +**推导过程**: + +1. **求导数**: + 对 $y = -2x^2 + 8x - 3$ 关于 $x$ 求导: + $$ \frac{dy}{dx} = -4x + 8 $$ + +2. **求驻点**: + 令导数为 0,解方程: + $$ -4x + 8 = 0 \implies x = 2 $$ + +3. **求顶点坐标**: + 将 $x = 2$ 代入原函数求 $y$: + $$ y = -2(2)^2 + 8(2) - 3 = -8 + 16 - 3 = 5 $$ + 所以顶点坐标为 $(2, 5)$。 + +4. **判断最值**: + 计算二阶导数: + $$ \frac{d^2y}{dx^2} = -4 $$ + 因为二阶导数小于 0,说明该驻点是极大值点。 + 对于二次函数,极大值即为全局最大值。 + +
+ +## 5. 📊 运行结果 + +
+点击展开 + +``` +Critical points (x): [2] +Vertex: (2, 5) +Second derivative: -4 +The vertex is a maximum. +Maximum value: 5 +``` + +
diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/solve.py b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/solve.py new file mode 100644 index 0000000..66d6669 --- /dev/null +++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/solve.py @@ -0,0 +1,41 @@ +# /// script +# requires-python = ">=3.11" +# dependencies = ["sympy"] +# /// + +import sympy as sp + +def solve(): + x = sp.symbols('x', real=True) + y = -2*x**2 + 8*x - 3 + + # Find derivative to find critical points + dy_dx = sp.diff(y, x) + critical_points = sp.solve(dy_dx, x) + + print(f"Critical points (x): {critical_points}") + + if not critical_points: + print("No critical points found.") + return + + vertex_x = critical_points[0] + vertex_y = y.subs(x, vertex_x) + + print(f"Vertex: ({vertex_x}, {vertex_y})") + + # Check second derivative to confirm maximum + d2y_dx2 = sp.diff(dy_dx, x) + print(f"Second derivative: {d2y_dx2}") + + if d2y_dx2 < 0: + print("The vertex is a maximum.") + max_val = vertex_y + else: + print("The vertex is a minimum.") + max_val = vertex_y + + print(f"Maximum value: {max_val}") + +if __name__ == "__main__": + solve()