diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/figure.png b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/figure.png
new file mode 100644
index 0000000..346cffb
Binary files /dev/null and b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/figure.png differ
diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/output.txt b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/output.txt
new file mode 100644
index 0000000..3724bba
--- /dev/null
+++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/output.txt
@@ -0,0 +1,9 @@
+[90m← sh(255) → node(264) → node(478) → zsh(pid=50427)
+[90m args: /bin/zsh -i[0m[0m
+[90m🔍 找到真实二进制文件: /usr/local/bin/uv[0m
+[90m→ exec /usr/local/bin/uv[0m
+Critical points (x): [2]
+Vertex: (2, 5)
+Second derivative: -4
+The vertex is a maximum.
+Maximum value: 5
diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot.py b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot.py
new file mode 100644
index 0000000..745681c
--- /dev/null
+++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot.py
@@ -0,0 +1,46 @@
+# /// script
+# requires-python = ">=3.11"
+# dependencies = ["numpy", "matplotlib"]
+# ///
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+# 设置字体
+plt.rcParams['font.sans-serif'] = ['WenQuanYi Micro Hei', 'Noto Sans CJK SC', 'Microsoft YaHei', 'SimHei', 'SimSun', 'DejaVu Sans']
+plt.rcParams['axes.unicode_minus'] = False
+
+# 绑定图像尺寸和 DPI
+plt.figure(figsize=(8, 6), dpi=150)
+
+# 定义函数
+def f(x):
+ return -2 * x**2 + 8 * x - 3
+
+# 生成 x 值
+x = np.linspace(-1, 5, 400)
+y = f(x)
+
+# 绘制函数曲线
+plt.plot(x, y, label=r'$y = -2x^2 + 8x - 3$', color='blue')
+
+# 标记顶点 (2, 5)
+vertex_x = 2
+vertex_y = 5
+plt.plot(vertex_x, vertex_y, 'ro', label='顶点 (2, 5)')
+plt.annotate(f'({vertex_x}, {vertex_y})', xy=(vertex_x, vertex_y), xytext=(vertex_x + 0.5, vertex_y),
+ arrowprops=dict(facecolor='black', shrink=0.05))
+
+# 添加坐标轴标签和标题
+plt.xlabel('x')
+plt.ylabel('y')
+plt.title('二次函数 $y = -2x^2 + 8x - 3$ 图像')
+plt.axhline(0, color='black',linewidth=0.5)
+plt.axvline(0, color='black',linewidth=0.5)
+plt.grid(True, linestyle='--', alpha=0.7)
+plt.legend()
+
+# 保存图像
+plt.savefig('figure.png', bbox_inches='tight')
+plt.close()
+print("图像已保存: figure.png")
diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot_output.txt b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot_output.txt
new file mode 100644
index 0000000..2d00ca9
--- /dev/null
+++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/plot_output.txt
@@ -0,0 +1,5 @@
+[90m← sh(255) → node(264) → node(478) → zsh(pid=50427)
+[90m args: /bin/zsh -i[0m[0m
+[90m🔍 找到真实二进制文件: /usr/local/bin/uv[0m
+[90m→ exec /usr/local/bin/uv[0m
+图像已保存: figure.png
diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/report.md b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/report.md
new file mode 100644
index 0000000..1db7d80
--- /dev/null
+++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/report.md
@@ -0,0 +1,72 @@
+# 二次函数 $y=-2x^2+8x-3$ 求解报告
+
+## 1. 🎯 问题描述
+
+已知二次函数 $y=-2x^2+8x-3$,求:
+1. 函数的顶点坐标
+2. 函数的最大值
+
+## 2. ✅ 最终结论
+
+该二次函数的顶点坐标为 $(2, 5)$。
+由于二次项系数 $-2 < 0$,抛物线开口向下,函数在顶点处取得最大值,最大值为 $5$。
+
+## 3. 📈 可视化
+
+
+
+**图表说明**:
+- 蓝色曲线:二次函数 $y = -2x^2 + 8x - 3$ 的图像
+- 红色圆点:函数的顶点 $(2, 5)$,也是函数的最高点
+
+## 4. 🧠 数学建模与解题过程
+
+
+点击展开
+
+**问题分析**:
+这是一个标准的二次函数性质分析问题。二次函数的一般形式为 $y = ax^2 + bx + c$。
+本题中,$a = -2, b = 8, c = -3$。
+
+**方法选择**:
+可以通过配方法将一般式转化为顶点式 $y = a(x-h)^2 + k$,从而直接读出顶点 $(h, k)$ 和最值。
+也可以利用导数法求极值点。
+这里我们使用 SymPy 进行符号计算,通过求导数的方法来确定顶点和最值。
+
+**推导过程**:
+
+1. **求导数**:
+ 对 $y = -2x^2 + 8x - 3$ 关于 $x$ 求导:
+ $$ \frac{dy}{dx} = -4x + 8 $$
+
+2. **求驻点**:
+ 令导数为 0,解方程:
+ $$ -4x + 8 = 0 \implies x = 2 $$
+
+3. **求顶点坐标**:
+ 将 $x = 2$ 代入原函数求 $y$:
+ $$ y = -2(2)^2 + 8(2) - 3 = -8 + 16 - 3 = 5 $$
+ 所以顶点坐标为 $(2, 5)$。
+
+4. **判断最值**:
+ 计算二阶导数:
+ $$ \frac{d^2y}{dx^2} = -4 $$
+ 因为二阶导数小于 0,说明该驻点是极大值点。
+ 对于二次函数,极大值即为全局最大值。
+
+
+
+## 5. 📊 运行结果
+
+
+点击展开
+
+```
+Critical points (x): [2]
+Vertex: (2, 5)
+Second derivative: -4
+The vertex is a maximum.
+Maximum value: 5
+```
+
+
diff --git a/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/solve.py b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/solve.py
new file mode 100644
index 0000000..66d6669
--- /dev/null
+++ b/20260109_163430_quadratic_vertex工具GithubCopilot模型gemini-3-pro-preview/solve.py
@@ -0,0 +1,41 @@
+# /// script
+# requires-python = ">=3.11"
+# dependencies = ["sympy"]
+# ///
+
+import sympy as sp
+
+def solve():
+ x = sp.symbols('x', real=True)
+ y = -2*x**2 + 8*x - 3
+
+ # Find derivative to find critical points
+ dy_dx = sp.diff(y, x)
+ critical_points = sp.solve(dy_dx, x)
+
+ print(f"Critical points (x): {critical_points}")
+
+ if not critical_points:
+ print("No critical points found.")
+ return
+
+ vertex_x = critical_points[0]
+ vertex_y = y.subs(x, vertex_x)
+
+ print(f"Vertex: ({vertex_x}, {vertex_y})")
+
+ # Check second derivative to confirm maximum
+ d2y_dx2 = sp.diff(dy_dx, x)
+ print(f"Second derivative: {d2y_dx2}")
+
+ if d2y_dx2 < 0:
+ print("The vertex is a maximum.")
+ max_val = vertex_y
+ else:
+ print("The vertex is a minimum.")
+ max_val = vertex_y
+
+ print(f"Maximum value: {max_val}")
+
+if __name__ == "__main__":
+ solve()