01-基石题-test
This commit is contained in:
BIN
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/figure.png
Normal file
BIN
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/figure.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 61 KiB |
@@ -0,0 +1,9 @@
|
||||
[90m← sh(255) → node(264) → node(478) → zsh(pid=50427)
|
||||
[90m args: /bin/zsh -i[0m[0m
|
||||
[90m🔍 找到真实二进制文件: /usr/local/bin/uv[0m
|
||||
[90m→ exec /usr/local/bin/uv[0m
|
||||
Critical points (x): [2]
|
||||
Vertex: (2, 5)
|
||||
Second derivative: -4
|
||||
The vertex is a maximum.
|
||||
Maximum value: 5
|
||||
46
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/plot.py
Normal file
46
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/plot.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# /// script
|
||||
# requires-python = ">=3.11"
|
||||
# dependencies = ["numpy", "matplotlib"]
|
||||
# ///
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# 设置字体
|
||||
plt.rcParams['font.sans-serif'] = ['WenQuanYi Micro Hei', 'Noto Sans CJK SC', 'Microsoft YaHei', 'SimHei', 'SimSun', 'DejaVu Sans']
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
|
||||
# 绑定图像尺寸和 DPI
|
||||
plt.figure(figsize=(8, 6), dpi=150)
|
||||
|
||||
# 定义函数
|
||||
def f(x):
|
||||
return -2 * x**2 + 8 * x - 3
|
||||
|
||||
# 生成 x 值
|
||||
x = np.linspace(-1, 5, 400)
|
||||
y = f(x)
|
||||
|
||||
# 绘制函数曲线
|
||||
plt.plot(x, y, label=r'$y = -2x^2 + 8x - 3$', color='blue')
|
||||
|
||||
# 标记顶点 (2, 5)
|
||||
vertex_x = 2
|
||||
vertex_y = 5
|
||||
plt.plot(vertex_x, vertex_y, 'ro', label='顶点 (2, 5)')
|
||||
plt.annotate(f'({vertex_x}, {vertex_y})', xy=(vertex_x, vertex_y), xytext=(vertex_x + 0.5, vertex_y),
|
||||
arrowprops=dict(facecolor='black', shrink=0.05))
|
||||
|
||||
# 添加坐标轴标签和标题
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('y')
|
||||
plt.title('二次函数 $y = -2x^2 + 8x - 3$ 图像')
|
||||
plt.axhline(0, color='black',linewidth=0.5)
|
||||
plt.axvline(0, color='black',linewidth=0.5)
|
||||
plt.grid(True, linestyle='--', alpha=0.7)
|
||||
plt.legend()
|
||||
|
||||
# 保存图像
|
||||
plt.savefig('figure.png', bbox_inches='tight')
|
||||
plt.close()
|
||||
print("图像已保存: figure.png")
|
||||
@@ -0,0 +1,5 @@
|
||||
[90m← sh(255) → node(264) → node(478) → zsh(pid=50427)
|
||||
[90m args: /bin/zsh -i[0m[0m
|
||||
[90m🔍 找到真实二进制文件: /usr/local/bin/uv[0m
|
||||
[90m→ exec /usr/local/bin/uv[0m
|
||||
图像已保存: figure.png
|
||||
72
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/report.md
Normal file
72
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/report.md
Normal file
@@ -0,0 +1,72 @@
|
||||
# 二次函数 $y=-2x^2+8x-3$ 求解报告
|
||||
|
||||
## 1. 🎯 问题描述
|
||||
|
||||
已知二次函数 $y=-2x^2+8x-3$,求:
|
||||
1. 函数的顶点坐标
|
||||
2. 函数的最大值
|
||||
|
||||
## 2. ✅ 最终结论
|
||||
|
||||
该二次函数的顶点坐标为 $(2, 5)$。
|
||||
由于二次项系数 $-2 < 0$,抛物线开口向下,函数在顶点处取得最大值,最大值为 $5$。
|
||||
|
||||
## 3. 📈 可视化
|
||||
|
||||

|
||||
|
||||
**图表说明**:
|
||||
- 蓝色曲线:二次函数 $y = -2x^2 + 8x - 3$ 的图像
|
||||
- 红色圆点:函数的顶点 $(2, 5)$,也是函数的最高点
|
||||
|
||||
## 4. 🧠 数学建模与解题过程
|
||||
|
||||
<details>
|
||||
<summary><strong>点击展开</strong></summary>
|
||||
|
||||
**问题分析**:
|
||||
这是一个标准的二次函数性质分析问题。二次函数的一般形式为 $y = ax^2 + bx + c$。
|
||||
本题中,$a = -2, b = 8, c = -3$。
|
||||
|
||||
**方法选择**:
|
||||
可以通过配方法将一般式转化为顶点式 $y = a(x-h)^2 + k$,从而直接读出顶点 $(h, k)$ 和最值。
|
||||
也可以利用导数法求极值点。
|
||||
这里我们使用 SymPy 进行符号计算,通过求导数的方法来确定顶点和最值。
|
||||
|
||||
**推导过程**:
|
||||
|
||||
1. **求导数**:
|
||||
对 $y = -2x^2 + 8x - 3$ 关于 $x$ 求导:
|
||||
$$ \frac{dy}{dx} = -4x + 8 $$
|
||||
|
||||
2. **求驻点**:
|
||||
令导数为 0,解方程:
|
||||
$$ -4x + 8 = 0 \implies x = 2 $$
|
||||
|
||||
3. **求顶点坐标**:
|
||||
将 $x = 2$ 代入原函数求 $y$:
|
||||
$$ y = -2(2)^2 + 8(2) - 3 = -8 + 16 - 3 = 5 $$
|
||||
所以顶点坐标为 $(2, 5)$。
|
||||
|
||||
4. **判断最值**:
|
||||
计算二阶导数:
|
||||
$$ \frac{d^2y}{dx^2} = -4 $$
|
||||
因为二阶导数小于 0,说明该驻点是极大值点。
|
||||
对于二次函数,极大值即为全局最大值。
|
||||
|
||||
</details>
|
||||
|
||||
## 5. 📊 运行结果
|
||||
|
||||
<details>
|
||||
<summary><strong>点击展开</strong></summary>
|
||||
|
||||
```
|
||||
Critical points (x): [2]
|
||||
Vertex: (2, 5)
|
||||
Second derivative: -4
|
||||
The vertex is a maximum.
|
||||
Maximum value: 5
|
||||
```
|
||||
|
||||
</details>
|
||||
41
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/solve.py
Normal file
41
01-基石题-test/模型gemini-3-pro-preview工具GithubCopilot/solve.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# /// script
|
||||
# requires-python = ">=3.11"
|
||||
# dependencies = ["sympy"]
|
||||
# ///
|
||||
|
||||
import sympy as sp
|
||||
|
||||
def solve():
|
||||
x = sp.symbols('x', real=True)
|
||||
y = -2*x**2 + 8*x - 3
|
||||
|
||||
# Find derivative to find critical points
|
||||
dy_dx = sp.diff(y, x)
|
||||
critical_points = sp.solve(dy_dx, x)
|
||||
|
||||
print(f"Critical points (x): {critical_points}")
|
||||
|
||||
if not critical_points:
|
||||
print("No critical points found.")
|
||||
return
|
||||
|
||||
vertex_x = critical_points[0]
|
||||
vertex_y = y.subs(x, vertex_x)
|
||||
|
||||
print(f"Vertex: ({vertex_x}, {vertex_y})")
|
||||
|
||||
# Check second derivative to confirm maximum
|
||||
d2y_dx2 = sp.diff(dy_dx, x)
|
||||
print(f"Second derivative: {d2y_dx2}")
|
||||
|
||||
if d2y_dx2 < 0:
|
||||
print("The vertex is a maximum.")
|
||||
max_val = vertex_y
|
||||
else:
|
||||
print("The vertex is a minimum.")
|
||||
max_val = vertex_y
|
||||
|
||||
print(f"Maximum value: {max_val}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
solve()
|
||||
Reference in New Issue
Block a user