diff --git a/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/figure.png b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/figure.png
new file mode 100644
index 0000000..efcdb09
Binary files /dev/null and b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/figure.png differ
diff --git a/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/plot.py b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/plot.py
new file mode 100644
index 0000000..c6a5f21
--- /dev/null
+++ b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/plot.py
@@ -0,0 +1,90 @@
+# /// script
+# requires-python = ">=3.11"
+# dependencies = ["numpy", "matplotlib"]
+# ///
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+# 设置字体
+plt.rcParams['font.sans-serif'] = ['WenQuanYi Micro Hei', 'Noto Sans CJK SC', 'Microsoft YaHei', 'SimHei', 'SimSun', 'DejaVu Sans']
+plt.rcParams['axes.unicode_minus'] = False
+
+# 创建图形
+fig, ax = plt.subplots(figsize=(10, 8), dpi=150)
+
+# 定义函数
+def f(x):
+ return -2*x**2 + 8*x - 3
+
+# 生成 x 数据(根据顶点位置设置合理范围)
+x = np.linspace(-1, 5, 500)
+y = f(x)
+
+# 绘制函数曲线
+ax.plot(x, y, 'b-', linewidth=2.5, label=r'$y = -2x^2 + 8x - 3$')
+
+# 标记顶点
+vertex_x, vertex_y = 2, 5
+ax.scatter([vertex_x], [vertex_y], color='red', s=120, zorder=5, edgecolors='darkred', linewidths=2)
+ax.annotate(f'顶点 ({vertex_x}, {vertex_y})\n最大值',
+ xy=(vertex_x, vertex_y),
+ xytext=(vertex_x + 0.8, vertex_y + 0.5),
+ fontsize=12,
+ ha='left',
+ arrowprops=dict(arrowstyle='->', color='red', lw=1.5),
+ bbox=dict(boxstyle='round,pad=0.3', facecolor='lightyellow', edgecolor='orange'))
+
+# 标记与 x 轴的交点(求根)
+# -2x² + 8x - 3 = 0 → x = (8 ± √(64-24))/(-4) = (8 ± √40)/(-4)
+discriminant = 64 - 24
+x1 = (8 - np.sqrt(discriminant)) / 4
+x2 = (8 + np.sqrt(discriminant)) / 4
+ax.scatter([x1, x2], [0, 0], color='green', s=100, zorder=5, marker='s', edgecolors='darkgreen', linewidths=2)
+ax.annotate(f'x ≈ {x1:.2f}', xy=(x1, 0), xytext=(x1 - 0.3, -1.5), fontsize=10, ha='center',
+ arrowprops=dict(arrowstyle='->', color='green', lw=1))
+ax.annotate(f'x ≈ {x2:.2f}', xy=(x2, 0), xytext=(x2 + 0.3, -1.5), fontsize=10, ha='center',
+ arrowprops=dict(arrowstyle='->', color='green', lw=1))
+
+# 绘制对称轴
+ax.axvline(x=vertex_x, color='purple', linestyle='--', linewidth=1.5, alpha=0.7, label=f'对称轴 x = {vertex_x}')
+
+# 绘制参考线
+ax.axhline(y=0, color='gray', linestyle='-', linewidth=0.8, alpha=0.5)
+ax.axhline(y=vertex_y, color='orange', linestyle=':', linewidth=1.5, alpha=0.7, label=f'最大值 y = {vertex_y}')
+
+# 填充顶点到 x 轴的区域(可视化最大值)
+x_fill = np.linspace(x1, x2, 100)
+y_fill = f(x_fill)
+ax.fill_between(x_fill, y_fill, 0, alpha=0.15, color='blue', label='函数值 > 0 的区域')
+
+# 设置坐标轴
+ax.set_xlim(-1, 5)
+ax.set_ylim(-4, 7)
+ax.set_xlabel('x', fontsize=14)
+ax.set_ylabel('y', fontsize=14)
+ax.set_title(r'二次函数 $y = -2x^2 + 8x - 3$ 图像', fontsize=16, fontweight='bold')
+
+# 添加网格
+ax.grid(True, linestyle='--', alpha=0.4)
+
+# 添加图例
+ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
+
+# 添加说明文字框
+textstr = '\n'.join([
+ '关键信息:',
+ f'• 顶点坐标: ({vertex_x}, {vertex_y})',
+ f'• 最大值: {vertex_y}',
+ f'• 开口方向: 向下 (a < 0)',
+ f'• 对称轴: x = {vertex_x}'
+])
+props = dict(boxstyle='round', facecolor='white', edgecolor='gray', alpha=0.9)
+ax.text(0.02, 0.98, textstr, transform=ax.transAxes, fontsize=11,
+ verticalalignment='top', bbox=props)
+
+plt.tight_layout()
+plt.savefig('figure.png', bbox_inches='tight', facecolor='white')
+plt.close()
+
+print("图像已保存: figure.png")
diff --git a/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/report.md b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/report.md
new file mode 100644
index 0000000..bac0eef
--- /dev/null
+++ b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/report.md
@@ -0,0 +1,116 @@
+# 二次函数 $y = -2x^2 + 8x - 3$ 顶点与最值 - 求解报告
+
+## 1. 🎯 问题描述
+
+已知二次函数 $y = -2x^2 + 8x - 3$,求:
+
+1. 函数的顶点坐标
+2. 函数的最大值
+
+## 2. ✅ 最终结论
+
+对于二次函数 $y = -2x^2 + 8x - 3$:
+
+**顶点坐标为 $(2, 5)$**。由于二次项系数 $a = -2 < 0$,抛物线开口向下,因此函数在顶点处取得**最大值 $y_{max} = 5$**,此时 $x = 2$。
+
+换句话说,当 $x = 2$ 时,函数值达到最大,为 $5$;当 $x$ 偏离 $2$ 时(无论向左还是向右),函数值都会减小。
+
+## 3. 📈 可视化
+
+
+
+**图表说明**:
+
+- **蓝色曲线**:二次函数 $y = -2x^2 + 8x - 3$ 的图像
+- **红色圆点**:顶点 $(2, 5)$,即函数的最高点
+- **绿色方块**:函数与 $x$ 轴的两个交点(零点)
+- **紫色虚线**:对称轴 $x = 2$
+- **橙色点线**:最大值参考线 $y = 5$
+- **浅蓝色区域**:函数值大于零的区域
+
+## 4. 🧠 数学建模与解题过程
+
+
+点击展开
+
+**问题分析**:这是一个关于二次函数顶点和最值的基本问题。对于一般形式的二次函数 $y = ax^2 + bx + c$,其图像是一条抛物线,顶点坐标和最值可以通过多种方法求解。
+
+**方法选择**:本题采用三种方法相互验证:
+
+### 方法一:顶点公式
+
+对于 $y = ax^2 + bx + c$,顶点坐标为:
+
+$$\left( -\frac{b}{2a}, \frac{4ac - b^2}{4a} \right)$$
+
+本题中 $a = -2$,$b = 8$,$c = -3$,代入得:
+
+$$x_{顶点} = -\frac{8}{2 \times (-2)} = -\frac{8}{-4} = 2$$
+
+$$y_{顶点} = \frac{4 \times (-2) \times (-3) - 8^2}{4 \times (-2)} = \frac{24 - 64}{-8} = \frac{-40}{-8} = 5$$
+
+### 方法二:求导法
+
+对函数求导:
+
+$$y' = \frac{d}{dx}(-2x^2 + 8x - 3) = -4x + 8$$
+
+令 $y' = 0$,解得 $x = 2$。
+
+将 $x = 2$ 代入原函数:$y = -2(2)^2 + 8(2) - 3 = -8 + 16 - 3 = 5$
+
+### 方法三:配方法
+
+$$y = -2x^2 + 8x - 3$$
+
+$$= -2(x^2 - 4x) - 3$$
+
+$$= -2(x^2 - 4x + 4 - 4) - 3$$
+
+$$= -2(x - 2)^2 + 8 - 3$$
+
+$$= -2(x - 2)^2 + 5$$
+
+顶点式为 $y = -2(x - 2)^2 + 5$,直接读出顶点 $(2, 5)$。
+
+**结论**:三种方法结果一致,顶点为 $(2, 5)$。由于 $a = -2 < 0$,抛物线开口向下,函数在 $x = 2$ 处取得最大值 $5$。
+
+
+
+## 5. 📊 运行结果
+
+
+点击展开
+
+```
+==================================================
+二次函数 y = -2x² + 8x - 3 求解
+==================================================
+
+【方法1:顶点公式】
+a = -2, b = 8, c = -3
+顶点横坐标 x = -b/(2a) = -8/(2×-2) = 2.0
+顶点纵坐标 y = (4ac-b²)/(4a) = 5.0
+
+【方法2:SymPy 求导验证】
+y' = 8 - 4*x
+令 y' = 0,解得 x = [2]
+将 x = 2 代入原函数:y = 5
+
+【方法3:配方法】
+y = -2x² + 8x - 3
+ = -2(x² - 4x) - 3
+ = -2(x² - 4x + 4 - 4) - 3
+ = -2(x - 2)² + 8 - 3
+ = -2(x - 2)² + 5
+顶点形式:y = -2(x - 2)² + 5
+
+==================================================
+【最终结果】
+==================================================
+顶点坐标:(2, 5)
+由于 a = -2 < 0,抛物线开口向下
+函数最大值:y_max = 5(在 x = 2 处取得)
+```
+
+
diff --git a/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/solve.py b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/solve.py
new file mode 100644
index 0000000..86e220a
--- /dev/null
+++ b/20260109_160634_quadratic_vertex-ClaudeCode+Opus45/solve.py
@@ -0,0 +1,61 @@
+# /// script
+# requires-python = ">=3.11"
+# dependencies = ["sympy"]
+# ///
+
+import sympy as sp
+
+# 定义符号变量
+x = sp.symbols('x', real=True)
+
+# 定义二次函数
+y = -2*x**2 + 8*x - 3
+
+print("=" * 50)
+print("二次函数 y = -2x² + 8x - 3 求解")
+print("=" * 50)
+
+# 方法1:使用配方法/顶点公式
+# 对于 y = ax² + bx + c,顶点为 (-b/(2a), (4ac-b²)/(4a))
+a, b, c = -2, 8, -3
+
+# 顶点横坐标
+x_vertex = -b / (2*a)
+# 顶点纵坐标(最值)
+y_vertex = (4*a*c - b**2) / (4*a)
+
+print(f"\n【方法1:顶点公式】")
+print(f"a = {a}, b = {b}, c = {c}")
+print(f"顶点横坐标 x = -b/(2a) = -{b}/(2×{a}) = {x_vertex}")
+print(f"顶点纵坐标 y = (4ac-b²)/(4a) = {y_vertex}")
+
+# 方法2:使用 SymPy 求导
+print(f"\n【方法2:SymPy 求导验证】")
+dy = sp.diff(y, x)
+print(f"y' = {dy}")
+
+# 令导数为0,求驻点
+critical_points = sp.solve(dy, x)
+print(f"令 y' = 0,解得 x = {critical_points}")
+
+if critical_points:
+ x_val = critical_points[0]
+ y_val = y.subs(x, x_val)
+ print(f"将 x = {x_val} 代入原函数:y = {y_val}")
+
+# 方法3:配方法展示
+print(f"\n【方法3:配方法】")
+print("y = -2x² + 8x - 3")
+print(" = -2(x² - 4x) - 3")
+print(" = -2(x² - 4x + 4 - 4) - 3")
+print(" = -2(x - 2)² + 8 - 3")
+print(" = -2(x - 2)² + 5")
+print("顶点形式:y = -2(x - 2)² + 5")
+
+# 最终结果
+print("\n" + "=" * 50)
+print("【最终结果】")
+print("=" * 50)
+print(f"顶点坐标:({int(x_vertex)}, {int(y_vertex)})")
+print(f"由于 a = {a} < 0,抛物线开口向下")
+print(f"函数最大值:y_max = {int(y_vertex)}(在 x = {int(x_vertex)} 处取得)")