diff --git a/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/figure.png b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/figure.png
new file mode 100644
index 0000000..316d166
Binary files /dev/null and b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/figure.png differ
diff --git a/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/plot.py b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/plot.py
new file mode 100644
index 0000000..9b224f8
--- /dev/null
+++ b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/plot.py
@@ -0,0 +1,97 @@
+# /// script
+# requires-python = ">=3.11"
+# dependencies = ["numpy", "matplotlib"]
+# ///
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+# 设置中文字体
+plt.rcParams['font.sans-serif'] = ['WenQuanYi Micro Hei', 'Noto Sans CJK SC', 'Microsoft YaHei', 'SimHei', 'SimSun', 'DejaVu Sans']
+plt.rcParams['axes.unicode_minus'] = False
+
+# 创建图形
+fig, ax = plt.subplots(figsize=(10, 8), dpi=150)
+
+# 定义函数 y = -2x² + 8x - 3
+def f(x):
+ return -2*x**2 + 8*x - 3
+
+# 顶点坐标
+x_vertex = 2
+y_vertex = 5
+
+# 生成 x 值范围(以顶点为中心,左右各延伸适当距离)
+x = np.linspace(-1, 5, 500)
+y = f(x)
+
+# 绘制抛物线
+ax.plot(x, y, 'b-', linewidth=2.5, label=r'$y = -2x^2 + 8x - 3$')
+
+# 标注顶点
+ax.plot(x_vertex, y_vertex, 'ro', markersize=12, zorder=5, label=f'顶点 ({x_vertex}, {y_vertex})')
+ax.annotate(f'顶点\n({x_vertex}, {y_vertex})',
+ xy=(x_vertex, y_vertex),
+ xytext=(x_vertex + 0.8, y_vertex + 0.5),
+ fontsize=12,
+ ha='left',
+ arrowprops=dict(arrowstyle='->', color='red', lw=1.5))
+
+# 绘制对称轴
+ax.axvline(x=x_vertex, color='green', linestyle='--', linewidth=1.5, alpha=0.7, label=f'对称轴 x = {x_vertex}')
+
+# 绘制最大值水平线
+ax.axhline(y=y_vertex, color='orange', linestyle=':', linewidth=1.5, alpha=0.7, label=f'最大值 y = {y_vertex}')
+
+# 绘制坐标轴
+ax.axhline(y=0, color='gray', linewidth=0.8)
+ax.axvline(x=0, color='gray', linewidth=0.8)
+
+# 求与 x 轴的交点(如果有)
+# -2x² + 8x - 3 = 0
+# x = (8 ± √(64-24)) / (-4) = (8 ± √40) / (-4)
+discriminant = 64 - 24 # b² - 4ac = 64 - 24 = 40
+x1 = (8 - np.sqrt(discriminant)) / 4
+x2 = (8 + np.sqrt(discriminant)) / 4
+ax.plot([x1, x2], [0, 0], 'g^', markersize=10, label=f'与x轴交点')
+ax.annotate(f'({x1:.2f}, 0)', xy=(x1, 0), xytext=(x1-0.3, -1.5), fontsize=10, ha='center')
+ax.annotate(f'({x2:.2f}, 0)', xy=(x2, 0), xytext=(x2+0.3, -1.5), fontsize=10, ha='center')
+
+# 与 y 轴的交点
+y_intercept = f(0)
+ax.plot(0, y_intercept, 'ms', markersize=10, label=f'与y轴交点 (0, {y_intercept})')
+
+# 设置坐标轴范围
+ax.set_xlim(-1.5, 5.5)
+ax.set_ylim(-5, 7)
+
+# 设置网格
+ax.grid(True, linestyle='--', alpha=0.5)
+
+# 设置标签和标题
+ax.set_xlabel('x', fontsize=14)
+ax.set_ylabel('y', fontsize=14)
+ax.set_title(r'二次函数 $y = -2x^2 + 8x - 3$ 的图像', fontsize=16, fontweight='bold')
+
+# 添加图例
+ax.legend(loc='lower right', fontsize=11)
+
+# 添加关键信息文本框
+textstr = '\n'.join([
+ r'$y = -2x^2 + 8x - 3$',
+ r'$= -2(x-2)^2 + 5$',
+ '',
+ f'顶点: (2, 5)',
+ f'最大值: 5',
+ f'对称轴: x = 2'
+])
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.8)
+ax.text(0.02, 0.98, textstr, transform=ax.transAxes, fontsize=11,
+ verticalalignment='top', bbox=props)
+
+# 保存图像
+plt.tight_layout()
+plt.savefig('figure.png', bbox_inches='tight', dpi=150)
+plt.close()
+
+print("图像已保存: figure.png")
diff --git a/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/report.md b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/report.md
new file mode 100644
index 0000000..178dba0
--- /dev/null
+++ b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/report.md
@@ -0,0 +1,134 @@
+# 二次函数 $y = -2x^2 + 8x - 3$ 求解报告
+
+## 1. 🎯 问题描述
+
+已知二次函数 $y = -2x^2 + 8x - 3$,求:
+
+1. 函数的顶点坐标
+2. 函数的最大值
+
+## 2. ✅ 最终结论
+
+这是一个开口向下的抛物线(因为二次项系数 $a = -2 < 0$),通过配方可以将其化为顶点式 $y = -2(x-2)^2 + 5$。
+
+**顶点坐标为 $(2, 5)$**,这意味着抛物线的对称轴是直线 $x = 2$。
+
+由于抛物线开口向下,函数在顶点处取得**最大值 $y_{\max} = 5$**,此时 $x = 2$。
+
+## 3. 📈 可视化
+
+
+
+**图表说明**:
+
+- **蓝色曲线**:二次函数 $y = -2x^2 + 8x - 3$ 的图像
+- **红色圆点**:顶点 $(2, 5)$,即函数取得最大值的位置
+- **绿色虚线**:对称轴 $x = 2$
+- **橙色点线**:最大值水平线 $y = 5$
+- **绿色三角**:与 $x$ 轴的两个交点
+- **紫色方块**:与 $y$ 轴的交点 $(0, -3)$
+
+## 4. 🧠 数学建模与解题过程
+
+
+点击展开
+
+### 问题分析
+
+这是一个标准的二次函数求顶点问题。二次函数的一般形式为 $y = ax^2 + bx + c$,其中:
+- $a = -2$(决定开口方向和宽窄)
+- $b = 8$
+- $c = -3$
+
+### 方法一:配方法
+
+将二次函数化为顶点式 $y = a(x-h)^2 + k$:
+
+$$
+\begin{aligned}
+y &= -2x^2 + 8x - 3 \\
+&= -2(x^2 - 4x) - 3 \\
+&= -2(x^2 - 4x + 4 - 4) - 3 \\
+&= -2(x - 2)^2 + 8 - 3 \\
+&= -2(x - 2)^2 + 5
+\end{aligned}
+$$
+
+从顶点式可直接读出:顶点坐标为 $(2, 5)$。
+
+### 方法二:公式法
+
+对于二次函数 $y = ax^2 + bx + c$,顶点坐标公式为:
+
+$$
+x_{\text{顶点}} = -\frac{b}{2a} = -\frac{8}{2 \times (-2)} = -\frac{8}{-4} = 2
+$$
+
+将 $x = 2$ 代入原函数:
+
+$$
+y_{\text{顶点}} = -2 \times 2^2 + 8 \times 2 - 3 = -8 + 16 - 3 = 5
+$$
+
+### 方法三:求导法(微积分验证)
+
+对函数求导:
+
+$$
+y' = \frac{d}{dx}(-2x^2 + 8x - 3) = -4x + 8
+$$
+
+令 $y' = 0$,解得 $x = 2$。
+
+二阶导数 $y'' = -4 < 0$,确认 $x = 2$ 处为极大值点。
+
+### 最大值判断
+
+由于 $a = -2 < 0$,抛物线开口向下,函数在顶点处取得最大值:
+
+$$
+y_{\max} = 5 \quad (\text{当 } x = 2 \text{ 时})
+$$
+
+
+
+## 5. 📊 运行结果
+
+
+点击展开
+
+```
+==================================================
+二次函数 y = -2x² + 8x - 3 求解
+==================================================
+
+1. 顶点坐标
+ 使用公式 x = -b/(2a) = -8/(2×-2) = 2.0
+ 代入求 y = -2×2.0² + 8×2.0 + (-3) = 5.0
+ 顶点坐标: (2, 5)
+
+2. 函数最大值
+ 由于 a = -2 < 0,抛物线开口向下
+ 函数在顶点处取得最大值
+ 最大值: y_max = 5
+
+==================================================
+SymPy 符号计算验证
+==================================================
+
+导数: y' = 8 - 4*x
+令 y' = 0,解得 x = [2]
+二阶导数: y'' = -4 < 0,确认为最大值点
+
+顶点坐标: (2, 5)
+最大值: 5
+
+==================================================
+配方形式验证
+==================================================
+配方形式: y = -2(x - 2)² + 5
+展开验证: -2*x**2 + 8*x - 3
+与原式相等: True
+```
+
+
diff --git a/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/solve.py b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/solve.py
new file mode 100644
index 0000000..fd33921
--- /dev/null
+++ b/20260109_162500_quadratic_vertex_max-工具GithubCopilot模型gemini-claude-opus-4-5-thinking/solve.py
@@ -0,0 +1,71 @@
+# /// script
+# requires-python = ">=3.11"
+# dependencies = ["sympy"]
+# ///
+
+import sympy as sp
+
+# 定义符号变量
+x = sp.symbols('x', real=True)
+
+# 定义二次函数
+y = -2*x**2 + 8*x - 3
+
+print("=" * 50)
+print("二次函数 y = -2x² + 8x - 3 求解")
+print("=" * 50)
+
+# 方法1:配方法求顶点
+# y = -2(x² - 4x) - 3
+# y = -2(x² - 4x + 4 - 4) - 3
+# y = -2(x - 2)² + 8 - 3
+# y = -2(x - 2)² + 5
+
+# 方法2:使用公式 x_vertex = -b/(2a)
+a = -2
+b = 8
+c = -3
+
+x_vertex = -b / (2*a)
+y_vertex = a * x_vertex**2 + b * x_vertex + c
+
+print(f"\n1. 顶点坐标")
+print(f" 使用公式 x = -b/(2a) = -{b}/(2×{a}) = {x_vertex}")
+print(f" 代入求 y = {a}×{x_vertex}² + {b}×{x_vertex} + ({c}) = {y_vertex}")
+print(f" 顶点坐标: ({int(x_vertex)}, {int(y_vertex)})")
+
+print(f"\n2. 函数最大值")
+print(f" 由于 a = {a} < 0,抛物线开口向下")
+print(f" 函数在顶点处取得最大值")
+print(f" 最大值: y_max = {int(y_vertex)}")
+
+# 使用 SymPy 验证
+print("\n" + "=" * 50)
+print("SymPy 符号计算验证")
+print("=" * 50)
+
+# 求导数找极值点
+dy = sp.diff(y, x)
+critical_points = sp.solve(dy, x)
+print(f"\n导数: y' = {dy}")
+print(f"令 y' = 0,解得 x = {critical_points}")
+
+# 验证是最大值(二阶导数 < 0)
+d2y = sp.diff(dy, x)
+print(f"二阶导数: y'' = {d2y} < 0,确认为最大值点")
+
+# 计算顶点处的函数值
+x_v = critical_points[0]
+y_v = y.subs(x, x_v)
+print(f"\n顶点坐标: ({x_v}, {y_v})")
+print(f"最大值: {y_v}")
+
+# 配方形式
+print("\n" + "=" * 50)
+print("配方形式验证")
+print("=" * 50)
+vertex_form = -2*(x - 2)**2 + 5
+expanded = sp.expand(vertex_form)
+print(f"配方形式: y = -2(x - 2)² + 5")
+print(f"展开验证: {expanded}")
+print(f"与原式相等: {sp.simplify(expanded - y) == 0}")